Abgabe 06.01.2012 vor der Plenarübung

PHYSIKALISCHE PROBLEME

Wir üben das Lösen einfacher physikalischer Probleme aus der Mechanik. Die kleine Auswahl zeigt, dass wir schon eine ganze Palette von konkreten und interessanten Problemen angehen können.

[H30] Bewegungsgleichungen

$$[2+1+1+1+1=6]$$
 Punkte

Ein Teilchen der Masse m bewege sich in der x-y-Ebene unter der Wirkung der Kraft

$$\vec{F}(\vec{r}) = -m\omega^2 \begin{pmatrix} x \\ 4y \\ z \end{pmatrix} .$$

Wie lautet die allgemeine Lösung der Bewegungsgleichungen? Überprüfen Sie für die allgemeine Lösung den Energieerhaltungssatz. Geben Sie die Anfangswerte so an, dass sich das Teilchen

- (a) auf einem Parabelbogen,
- (b) auf einer achtförmigen Bahn,
- (c) auf einer Ellipse

bewegt. *Hinweis*: Benutzen Sie ggfls. MATHEMATICA, um durch etwas Probieren die gesuchten Anfangswerte zu finden. Diese sind nicht eindeutig, die Angabe jeweils einer Lösung genügt.

[H31] Michelson-Morley

[6 Punkte

Eine Fähre fährt auf geradem Kurs über einen Fluss von einem Punkt A zu einem nicht notwendig gegenüberliegenden Punkt B und zurück. Dabei sorgt der Antrieb für eine konstante Geschwindigkeit u gegenüber dem Wasser, das mit Geschwindigkeit $v, 0 \le v < u$, in einem Winkel α zur Verbindungslinie ℓ der Punkte A und B strömt. Wie hängt die Fahrzeit für Hin- und Rückweg von u, v und α ab? Bemerkung: Michelson und Morley versuchten auf der Erde, die mit $v = 30 \, \mathrm{km/s}$ die Sonne umläuft, bei Licht den Laufzeitunterschied für die Richtungen α und $\alpha + \pi/2$ nachzuweisen.

[H32*] Achterbahn

[6* Extrapunkte]

Eine antriebslose, reibungsfreie Achterbahn soll auf geneigter Bahn losgleiten und später einen senkrechten Kreislooping mit Radius R durchfahren. Wie hoch muss der Startpunkt liegen, damit es die Fahrgäste nirgends von den Sitzen abhebt?

Hinweis: Längs der Bahn ist die Energie $E=\frac{1}{2}m\left(\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}\right)^2+mgz$ erhalten. Geben Sie $\vec{x}(t)$ im Kreis als Funktion eines Winkels $\varphi(t)$ an, berechnen Sie die Geschwindigkeit $\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}$ als Funktion von φ und seiner Ableitung, und schreiben Sie den Energiesatz in der Form $\frac{\mathrm{d}\varphi}{\mathrm{d}t}=f(\varphi,E)$. Durch Differenzieren von $\vec{x}(\varphi(t))$ lässt sich die Beschleunigung \vec{b} durch Zeitableitungen von φ ausdrücken. Zeitableitungen von φ kann man durch Differenzieren von $\frac{\mathrm{d}\varphi}{\mathrm{d}t}=f(\varphi,E)$ und wiederholtes Verwenden dieser Relation als Funktion von φ schreiben.

HINWEIS

Bitte geben Sie auf Ihren abgegebenen Lösungen immer Name, Vorname, Matrikelnummer und die Übungsgruppe an!